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1. Introduction

The global optimization problem in a numerically well-defined sense can be
formulated as

find £ s.t. f=f(£) is close to f* = max flx) 5]

where K is a compact set in R" and fis a continuous function over K. Obviously,
solving (1) requires the previous specification of some closeness criterion in order
to evaluate the goodness of any feasible point £. It is a trivial observation that if,
for given positive ¢, an X is sought such that

f*—f<e, 2)

then, under solely qualitative assumptions on f like continuity or differentiability
up to a certain order, no algorithm can be given which terminates after a finite
number of steps with a point ¥ guaranteed to satisfy (2).

The situation can be improved if quantitative assumptions on the objective
function are introduced, e.g. the validity of a Lipschitz condition with known
Lipschitz constant. In such a case results can be proven ([2]) asserting that an
algorithm exists leading to f as accurate as required by (2); however, the number
of evaluations of f needed may be as large as

(L/2e)Y,

where L is the Lipschitz constant, and this is typically a large number. The reason
for that is intrinsic to the idea of guaranteeing the achievement of a prefixed
accuracy, and hence of taking into account the possibility of occurrence of the
worst possible case. Therefore the idea naturally arises to relax prevention against
the worst possible case, usually ‘quite pathological and never occurring in the
practice, and to take care only of cases that have some nonnegligible chance to
occur.
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A satisfactory treatment of changes of occurrence can be achieved only if the
global optimization problem (1) is reformulated superimposing to the class of
problems to be considered a probabilistic structure and an accuracy criterion is set
up consequently. The Bayes theorem then provides the basic tool for adapting the
superimposed probabilistic structure to information gained about the problem
through function evaluations.

Methods derived according to this framework will be referred to as Bayesian
methods. The aim of this paper is to review the different probabilistic formula-
tions of the global optimization problem and the related Bayesian methods as yet
proposed.

2. The Random Function Approach

The approach dates back to the sixties (see [22] and references in [23]) and it is
based on the idea of introducing a probabilistic model for the objective function f
in the form of a random function f(x, w), where w belongs to some measurable
space ) over which a probability measure P is defined and, for fixed x, f(x, @) is a
random variable, i.e. a measurable function of w. The actual function to be
optimized is seen as a realization f(x) of f(x, ). It is useful to assume that, for
almost every o, f(x, ») is a continuous function of x, so that a.s.

max f(x, w)

exists under the hypothesis of compactness of K. For sake of brevity, the
argument o will be frequently omitted in the sequel.

Let S, be a sequential n-step optimization strategy, that is a mapping of the
function space considered over the set of n-tuples of points in K such that S, (f)
produces the points

X1

x; = X,(xy, f(x1))

X, = X, (x5 fx,)s -0 Xm0, flX,21)) (3)

The effectiveness of S, for the function f can be defined by the difference
L(S,, f) =max f(x) = f

where x, is given by (3) and f, = max, .., f(x;), so that over the class { f(x, @)}
S, will display the average effectiveness

E(L(S,. )= | LGS, HP@w)
= Emax f) ~ E(/2) @

Then an optimal strategy S, can be defined as any strategy minimizing (4), i.e.
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E(L(S}. ) =inf E(L(S,, ))
or, equivalently, such that

E(f:*)=sng(f,’f),

where £ " is the largest function value attained by § .

The determination of S, can take profit of a standard dynamic programming
approach; introducing the vectors z; of information available about f at step i,
z;=(x, f(x{),...,x;, f(x;)), the Bellman equations are to be solved

(2 1) = max Bmax( (2, £1 1) | 2, 1)
u(z; )= IPEaI? E(u;, (2,4, x, f(X)) l Zi 1) i=n—1,...,2
y = max E(u(x, () - s)

Each equation defines the next point of the strategy § : as the point where the
max on the right hand side is attained.

It is well known that serious problems arise from a computational point of view
in dealing with Bellman equations even for moderate n; it is therefore usual
practice to derive suboptimal strategies considering only a few or just use one of
equations (5). For instance (a)

X, = argmax Emax{ f(x), f1_.}] ) (6)

this strategy can be said one-step optimal as, once i points have been obtained,
the (i+1)—st is determined in an optimal way. Differently from (5), the
influence of this choice on future choices is not taken into account.

(b) if, given z,, the next points x, ; and x,,, are obtained according to the
equations

Upo(z; +1) = Teag E(max{ f(x), f:—l} | Z;41)

U 1(z;,) = max E(u;,,(z;, %, f(x)) ] z;) (7)

then the resulting strategy can be named two-step optimal.

Clearly (6) and (7) can be applied sequentially without prefixing in advance the
number of points at which one is willing to evaluate the function f. This, however,
requires that some suitable stopping criterion be previously set up. Both for this
aspect and with respect to implementation of (6) and (7), the situation is rather
different if the problem is one-dimensional or multi-dimensional. In the former
case, in fact, the Wiener process provides a manageable stochastic model of
continuous multimodal functions, by which the distribution of f(x) given z, is
easily obtained for each i and for each x; indeed this distribution is normal with
mean
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X, —X X—Xx;_
/J“(xlxh fl’ cres Xy f"):fi’l xl.l—xi_1 i xi—xl,',ll ’
xE[xi_l,xi],l'Zz,...,n;
:fn’x?xn, (8)
where f, = f(x;), i=1,...,n, and variance
(= x5 = %)
Uz(xlxb flr"-rxn? fn)=0'2 1_1 l ;
Xi =X
XE[xi_pxi];
:a-z(x—xn),x>xn. (9)

In (8) and (9) it is assumed that x, is the origin of the Wiener process and that
the x,’s are increasingly ordered. ¢ is the parameter of the Wiener process which
must be specified in advance. Under the Wiener model, the optimization problem
on the right hand side of (6) is a multiextremal one, but the function to be
maximized can be recognized as unimodal in each interval {x,_,, x,].

A relevant consequence of the Wiener model for f is that the conditional
distribution of max, f(x) can be expressed by the simple formula ([19])

P{ max f()<flx, fis-os £
=1 P{, max fOO<Flxis fiowoomn £}
where
P{xg@i{x f(x)>f_| xl’ f1= T ’xrn fn}
1 f=max(f,_,, f)

(10)

*\exp( 2 G120

o (X, = Xi-y)

) Femax(ff)°

This result enables to deal probabilistically with the error max f(x) — max, f.
Algorithms based on the Wiener model and the error control provided by (10)
have been proposed in [22], [32], [30], [3]; their performance has been shown to
be fairly good on several test instances.

In the multidimensional case, the easiest way to model an unknown continuous
function is to consider Gaussian random functions. According to this model, for
each n-tuple of points x,,...,x,, the joint density of the function values
f(x)), ..., f(x,) is multivariate normal (see, e.g., [1]) with mean and covariance
matrix specified once the mean and covariance functions are given

p(x) = E{f(x)}
R(x, y) = E{[f(x) = uMI[A(¥) = (D]} .
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Gaussian random functions have the attractive property that the posterior

distribution of f(x) given f(x,) given f(x,), ..., f(x,) is still normal, with mean
() = n(x) + 3,3 0(F, — ) (11)
and variance
o) =0’(x) -2 5%, (12)
where

Sr=(R(x, x,),...,R(x, x,))
F,=((x), ..., f(x,))

3,. covariance matrix of F,

B = ((xy), ..o, plx,)
o’(x) = R(x, x) .

It is therefore in principle straightforward to compute the expectations required
for example by (7), as they simply require to integrate with respect to the normal
distribution. But a serious difficulty arises when the next point has to be selected:
indeed, the maximization problem involved, which turns out to be of the form
max, . ¢(x, z;), is just a global one and, unlike in the one-dimensional case,
there is no easy way to decompose it into a number of unimodal subproblems. It
has been argued however ([25]) that exact maximization is not required, so that it
may be sufficient for instance to evaluate ¢ at a number m (say m = 100) of
random points and to select x;_; as the ane where the best value of ¢ has been
observed. Observe that it is the function ¢ to be evaluated in this procedure and
not the objective function f. This implies that, if the evaluation cost of f is very
high, the overhead cost can be relatively small, at least for moderate i. Converse-
ly, looking at (11), (12), the storage and computational cost required by ¢ may
become prohibitively high for large i.

Several attempts have been made to reduce such overheads. Modelling f by a
Gaussian random function, the complexity of (11) and (12) is a consequence of
the model updating formulas given by Bayes theorem. Simplification is possible
only if one drops the consistency of the model after n observations with the model
after n — 1 observations. In other words, the idea is to consider, for each n, a
Gaussian random function such that p,(x) and o.(x) are given through simple
expressions in x,, f(x;), i=1,...,n, so that they will no longer be in general
conditional means and conditional variances. Methods of this type have been
introduced in [24] and [29], [31], [33], [34]. It is worth mentioning that the
approach of Zilinskas is based on a number of axioms aimed at formalizing
information available to a “rational” optimizer about the function behavior. It has
to be finally remarked that no exact result about the distribution of the global
maximum of a Gaussian random function is available in the multidimensional
case. This means that, unless the number of function evaluations is fixed in
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advance, the question of how to evaluate the error of an approximation f to the
global optimum cannot be answered accurately.

In the same framework of a stochastic model representing the function to be
optimized is the information approach, recently reviewed in ([27]). In this
approach, in the case of one-dimensional optimization problems with a single
global extremum x*, a prior distribution is considered on the location of x*, a
Gaussian distribution is assumed for the increments of the objective function
depending on the location of x*, and the posterior density of x* is obtained after
a number of function evaluations. Then an estimate of x* is obtained maximizing
the posterior density, and this estimate is assumed as the next search point. Under
suitable conditions the resulting algorithm has the property that the set of its
accumulation points coincides with the set of local maxima. For the solution of
multidimensional problems, it is proposed to transform the problem in a one-
dimensional one by means of Peano maps.

3. A Probabilistic Model for the Structure of Global Optimization
Problems and the Multistart Method

It is an obvious observation that a global optimization problem would be sotved
once all local minima were discovered. It is therefore common practice to try to
reach all local maxima starting a local search from n points randomly (uniformly)
drawn in K. The procedure is usually referred to as mulfistart method. If the
number of local maxima is finite and apart from pathological situations, the
procedure will achieve its goal with positive probability p; furthermore, p
increases as the number of trials increases, so that n is usually taken large. It is
conceivable that if it were possible to obtain information about p during the
search procedure, then some stopping criterion could be set up avoiding to spend
local searches superfluously.

Following [28] it is useful to state the problem as follows. Assume that in K
there is a finite number of local maxima, say xl* e ,x,f . Let A be a search
algorithm which, starting from a point x in K leads to some point A(x) in K.
Define

X '={(x€K:AXx)=x]},i=1,... .,k

and assume that the sets X ,.* are Lebesgue measurable. Denoting by m the
Lebesgue measure, assume that m(K)=m(U*_, X), that is the set of starting
points causing A not to converge to a local maximum has null measure. The set
X/ is called region of attraction of x, and the quantity 6, = m(X,)/m(K) is the
share of x; .

It X,,...,X, are i.i.d. random variables uniformly distributed in K, then
P{XjEX,.*} =0,j=1,...,n,i=1,..., k. The application of A to the X}’s will
lead to find N, times the maximum x,, with N,=0 and Zf_, N, = n. Given the
number of maxima k and the shares 6,, ..., 6,, then the vector (N,,...,N,)
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has the multinomial distribution

!
P{N1=n1,...,Nk=nk}=ﬁeql---egk. (13)
Askand 6, ..., 0, are unknown, it is sensible to infer about them on the basis
of the available observations. By (13), this problem can be seen as a problem of
inference about a multinomial distribution with an unknown number of classes.
Let W be the random variable representing the number of different local
maxima found after n local searches, and let the random vector (N,, ..., Ny, ) be
such that N, represents the number of times the j-th maximum among the W has
been found. Let values w, (n,,...,n,) be observed, 4, be the number of n,’s
equal to j, and S,[w] denote the set of all permutations of w different elements
from {1,..., k}; then the likelihood is given by

P{W=w,N,=n,,...,N,=n, |k, 6,...,6)}

w

n! S [T (14)

G TR . ;
= L2 et e yes =t

.....

Once a prior distribution on the parameter space @ ={(0,,...,6,), k=
1,2,...,%%, 6,=1, 6 =0} is specified, the Bayes Theorem enables to obtain
the posterior distribution of the unknown parameters k and 6,, ..., 6,. If the

prior distribution on @ is given in the form

= 21 Piky (15)
=

where p; is the prior probability that the true number of local maxima equals j and
u; is the conditional a priori distribution of (6, ..., 6,) given that j is the true
number of local maxima, then by (14) for k= w

P{sz,<61,...,9k>€<d91,...,d6k>{W=w’N1:nl’.‘"NW:nw} (16)

i Pr Z:{gl ..... 8wl ES (W] H;V:I GZ:IJ“(dGl’ st dek) (17)
Eiw P L gesin iny 0gin(d6;, ..., d6)

.....

Having found w maxima, it is of interest to determine whether w = k (all
maxima have been located) or w# k. Assume that there is a loss ¢ for having
decided w = k when w <k, and a loss C for having decided w < k when w = k;
moreover, assume that right decisions have no losses. Then standard arguments
show that it is optimal to decide w = k when

cP{K>w|W=w,N,=n,,...,N,=n,}
<CP{K=w|W=w,N,=n,,...,N,=n,}

or, making use of (17), when
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¢ 2 p X [1o7u@e,. ... do,)

k=w+1 {g1s s 8w} ES[w] i=1
< Cp, f I1 67u(ds,, ..., ds,), (18)
i=1
and to decide k > w when (18) is not satisfied.
A convenient choice for u(dé,, . . ., d6,) is the symmetric Dirichler distribution

([21]), i.e. a Dirichlet distribution with parameters all equal to some @ >0. In
particular, @ =1 gives the uniform distribution on the k-dimensional simplex
{620, i=1,...,kXf, 6 =1}. Under a symmetric Dirichlet distribution, in
(18)

Hf 167 n(de, ..., d6,)= E{H eg‘t}
i=1 i=1

_ Tlka)IZ, T'(a + n;)
© (T()*Tlka +n) )

so that after some simplifications (18) becomes
- k I'ka) I'(wa)
ck=§+1pk<w) I'ka + n) <Py I'(wa +n) "’ (20)

The optimal decision about the number of local maxima can now be obtained
after the specification of the prior { p, }. The numerical behavior of rule (20) has
been thoroughly investigated by Monte Carlo simulation in [9] in the case of a
truncated Poisson distribution. In the simulated situations the rule has been found
accurate and robust at a satisfactory level.

If {p,} is taken as the improper distribution { p, = const}, which corresponds
to the idea of any number of maxima being equally likely, then, for n = w + 2 it is
optimal to decide k = w if the condition

I'(n+w)'(n—w-—1) s1+£
F(n)'(n—1) ¢

is satisfied.

It is interesting to observe that, because of the improperness of the distribution
{p,.}, an optimal rule does not exist when n<w + 2.

In case when k > w has been decided, it may be of interest to evaluate the total
share of undiscovered regions. By (17) and (19) it is easy to obtain after some
manipulations that, if y=1—X, 6, then the optimal estimate according to a
quadratic loss function, is

‘?ZE(‘YIW’nla'--anw)
. k—w (k) T(ka)
_ k=v &y ka P\w/ T(n + ka) (21)
, k) T(ka) '
Eiew pk(w T'(n+ ka)

Note that both in (20) and in (21) the only observed quantity involved is the
number of local maxima found.
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The above decision setting assumes that n is fixed. Assume now that the
number of local searches is not fixed in advance, but they are started sequentially.
Then after each of them is completed it is possible to decide whether to continue
or not according to some criterion comparing the results obtained so far with the
benefit expected from starting new searches. To be more precise, suppose that
each local search has a fixed cost C, and that there is a loss A if not all the local
maxima have been discovered, so that after n local searches the total loss is

Cn iftw, =K
L(W"’K):{A+Cn itw <K (22)
where w, is the number of discovered local maxima during the first n local
searches. The expected posterior loss is then

L(w) = E{L(W,, K) | W, = w}
=AP{K>w|W,=w}+cn=Aq,(w)+cn,
where, by (17) and (19),
p. F(wa)/T(wa + n)

g,(w)=1- P :
T s pk( w) [(ka)/T(ka + n)

The problem is now to find an optimal stopping rule N* which minimizes E(Y)
over the class of stopping rules N, where, for ¢ = C/A,

Y, =q,+cn.

As optimal stopping requires to look ahead for future observations given the
present ones, the predictive probability

P{Wn+lzw+1IWn:w}

has to computed. Note that, once W, = w, the only possible values for W, ,, are w
and w + 1.

A moment consideration shows that the above probability is just the probability
of starting the next search within the region of attraction of a maximum not yet
discovered, that is the expected total share of undiscovered maxima, so that, by

(21)7
P{W,  =w+1|W,=w}=E(y|W,=w)=H%w). (23)

Formula (23) can now be used to show that the sequence Y, is a submartingale
([12]) and hence an 7 exists such that P{N*=<n} = 1. The actual construction of
N* can be achieved by backward induction (see, e.g. [13}). It is possibie to derive
analogous results for losses different from (22), see [10] and [11]. It has to be
observed that all the proposed loss functions (including the one in the following
Section) provide rather crude, although computationally convenient, approxima-
tions to “real” losses suffered by actual users; in particular the assumption that
each local search has a fixed computational cost is rather naive. This is likely to be
cause of some difficulties in assessing the loss function parameters. However, this
is an usual situation in applications of Statistical Decision Theory (see, e.g., the
discussion in [4}).
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A drawback of the approach is that the function values at the maxima are not
taken into account. It has been recently observed ([26]) that in the case that
different maxima have different values, it is possible to incorporate ordering
information about the maxima induced by their function values. Then stopping
rules can be provided under losses based on the number and the shares of maxima
not yet found but ‘“better”, with respect to function value, than the best
maximum found so far. It is reasonable to expect that such rules have better
performance in actual situations than the ones not based on the ordering.
Supporting evidence is presented in [26] for standard test problems from [14].

4. A Bayesian Model for the Distribution of the Sampled Maxima

The approach presented in the previous section, even with the improvement
proposed in [26], is unable to deal explicitly with function values, neglecting this
way important information about the structure of the problem. A way of
circumventing this situation has been proposed in [7], following ideas introduced
in [5].

Let t,=f(x), i=1,...,n, be the optimum values sampled by the multistart
methods after n steps. Assume that each local search has a fixed cost ¢ >0,
expressed in the same units as f, and that the cost connected with stopping at step
n is

L(t), ..., t,;0) =~y T nc 24)
where £, =max,_, . The cost (24) combines the cost of a new local search
with the gain corresponding to a unit increase in the maximum observed value.

The observations ¢; are independent realizations of a random variable T whose
distribution F is unknown (except for trivial cases). Observe that, in case the
distribution were known, the problem of optimally stopping the multistart method
would be solved. Indeed, under (24), the problem is the one of stopping
sequential sampling from a distribution F which is referred to in the literature as
optimal sampling with recall ([13]): when F is known, the optimal stopping rule is
to stop the sampling process as soon as

[ t-rparo=e, 25)

or equivalently,

F 1-F@)drsc. (26)

Q)

As F is unknown, it is necessary to adopt some model of it. This has the
consequence that it is no longer possible to determine the optimal stopping rule,
but the model hereafter described enables to derive easily suboptimal rules which
perform satisfactorily in practice.

Following the ideas of Bayesian nonparametric analysis ([16], [17], [15], [18]) a
class of random distribution functions in the family of neutral to the right can be
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introduced as a model for the unknown distribution function. A class in this
family is described by the process

Ft)=1-exp(-Y(?)) , (27)

where Y(¢) is a stochastic process a.s. nondecreasing and right continuous with
lim,, , Y(#)=0 and lim,_,, Y(r)=c. In [7], the simple homogeneous process
introduced in [18] was considered for its manageability in presence of coinciding
observations, as it is the case for the optimum values generated by the multistart
method. This process yields through (27) a probability measure which satisfies the
basic requirements for being a suitable a priori probability measure over the class
of distribution function ([16]): (a) its support is wide enough to contain all
distributions of practical interest: (b) the posterior probability given a sample
from it is computationally tractable.

It can be proved that, under a simple homogeneous process Y(¢), given a
sample ¢, ..., ¢, from F(t) as in (27), the posterior Bayesian estimate of F(¢) is
given by

1-F()=EQ-F@)|t,...,t,)

n(t)
m(t) + A
T Ta+ A eXP{_ 21 ('Y(t(j)) - 'Y(t(j—l)))/(mj—l + /\)}
exp{—(y(?) — 'Y(t(n(z))))/(m(t) +M)}, (28)
where v is a continuous nondecreasing function with y(—«) =0 and y(®) = =; A is
a positive parameter; £, . . ., {,, are the increasingly ordered distinct observa-

tions in the sample;

m; = #{observations > ¢, } ;
n(t) = #{distinct observations < ¢} ;
m(t) = #{observations > ¢} ;

—00 ,

Loy =

As it seems to be out of question to find an optimal stopping rule under the loss
(24) and the simple homogeneous process, it is natural to consider suboptimal
rules. k-step look ahead (k-sla) rules ([4]) frequently represent useful approxima-
tions to optimal stopping rules; a k-sla rule calls for stopping the sampling process
as soon as the current cost is not greater than the cost expected if at most k
further observations are taken. Under a stochastic model for F, either parametric
or nonparametric, the 1-sla is found to be the rule which prescribes stopping as
soon as

ﬁ (t—tmy) dF,(H=<c, (29)
(n)
where F ()= E(F(t)|t,,...,t,), or equivalently

r (- E()de<c. (30)
m)
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Stopping is prescribed by the 2-sla rule when

[ a-Ewar
t(n)

—ET"”"'<min{0, c—j 1 -F,.,0) dt})sc,
max(t,y. Ty, 1q)

where £ "*'1” stands for expectation with respect to the conditional distribution of

T, ., given the first n observation.

As Fn(t) is the predictive distribution of the next observation given the first n
observations, (30) says that stopping occurs according to the 1-sla as soon as the
expected improvement in the best sampled value determined by a further
observation is not larger than ¢. Observe that (29) has the same form as (25) and
(30) has the same form of (26), with F, in place of F, which shows that the
optimal rule when F is known is actually a 1-sla.

Looking at (28) and (30), it is easily seen that the 1-sla is easily implemented if
[ e "™ is easily obtainable for any a. As y and A are parameters of the model,
they can be chosen in accordance with this condition. It can be seen that, if
Fy(t) = E(F(t)) is a prior guess for F(z), then F;, A and vy are linked by the
equation '

y(1) = —Alog(1 - Fy(2)) ,
which is helpful for assessing the prior parameters.

Implementation of the 2-slg is more cumbersome, but it can be worked out
numerically (see [7] for the details). It should be noted that, due to the fact that
whenever a k-sla says to continue it is optimal to continue, then the 2-sla needs to
be invoked only when the 1-sia says to stop.

1- and 2-sla have been tested for the standard test problems of [14] ([7]), for
randomly generated problems in up to six dimensions and with various degrees of
complexity ([6]), and for randomly generated distribution functions F(¢) ([8]).
The results show that the percentage of failures in finding the global maximum is
low, with a moderate number of local searches performed before stopping, both
for the 1-sla and for the 2-sla: actually the behavior of the two rules is nearly
indistinguishable. This fact leads to the conclusion that the 1-sla rule is, because
of its simplicity and effectiveness, an attractive stopping rule for the multistart
method. It is to be observed that the fact that the two rules are close does not
imply that they are close to the optimal one: however the analysis performed in
[8] shows that, under reasonable tuning of the prior parameters, the two
approximate rules can be made close to the optimal rule built under perfect
knowledge of the distribution of the sampled optimum values, that is of the very
structure of the problem.

5. Conclusions

Three Bayesian approaches to global optimization have been reviewed. They
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share the idea of dealing with uncertainty about the problem according to the
Bayesian paradigm; cach of them is however characterized by a different prob-
abilistic formulation of the problem structure. It is worth to recall that the random
function approach considers a stochastic model of the whole function to be
optimized, and it is aimed at developing optimization algorithms which are
optimal in some sense; in the other two approaches the modelization is restricted
to features of the objective function which are relevant for the performance of the
multistart algorithm, with the scope of deriving effective rules for the statistical
control of the algorithm itself. Thus the random function approach is the only
applicable one in situations in which the possibility of effectively performing local
searches is ruled out, by very costly function evaluations or by low function
regularity. When the multistart algorithm can be sensibly adopted, the approach
outlined in Section 4 offers, unlike the one of Section 3, the attractive possibility
of taking into account explicitly information provided by function values at the
sampled extrema. However, the possibility of providing a comparative numerical
evaluation of the three approaches is related to the general question of the
evaluation of performances of global optimization algorithms. A satisfactory
answer to this question would require the definition of a standard evaluation
environment (set of test functions, local search routine, algorithm
parameters, . . .) and of standard performance criteria. Unfortunately, afier the
early attempt in [14], no further effort has been devoted to such a definition. It is
to be remarked in particular that the set of test functions of [14] is very limited in
size and in complexity (few local extrema, up to six variables), so that the need is
felt for the introduction of a wider and more significant set of test functions. With
respect to this, the author recalls his proposal (see [S]) of exploiting the concept
of generalized metric interpolation ([20]) for generating global optimization test
functions (see also [6]), having full control of features like number of variables,
number, values and locations of the extrema, degree of regularity.
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